Tutorial 4
Q.1
Let
$$\mathcal{A} = \int D \subseteq |\mathbb{R}^{2} : \partial D$$
 has measure zero and Disbounded \mathcal{G} .
Find
Sup $\int_{D} (1-x^{2}-y^{1}-z^{2}) dV$
Solution:
Note the integral is maximized on
 $D_{0} = \int (x,y,z) : |-x^{2}-y^{2}-z^{2} \ge 0$
i.e. the unit ball.
We can then compute integral using spherical coordinates.
Sup $\int_{D} (1-x^{2}-y^{1}-z^{2}) dV$
 D_{est}
 $= \int_{D_{0}}^{T} \int_{0}^{2T} \int_{0}^{1} (1-p^{2}) p^{2} \sin \phi dp d\theta d\phi$
 $= 2\pi \cdot 2 \cdot \frac{2}{15}$
 $= \frac{\delta \pi}{15}$

First moments and centre of mass
Let
$$p=p(x,y,z)$$
 be the (mass) density of an object
represented by a region $D \subseteq IR^3$ (with ∂D measure zero,)
Mass: $M = \int_D p dV$ " $p dV = dm$: density $\times volume = mass$ "
First moment about the coefficient:
 $Myz = \int_D xp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $Mze = \int_D yp dV$ "Average mass of the
 $The centre of mass of R is a point ($\overline{x}, \overline{y}, \overline{z}$), where
 $\overline{x} = \frac{Myz}{M}$, $\overline{y} = \frac{Mz}{M}$.
The 2D case is similar the only difference is we
have $Mz = \int_D yp dV$, $My = \int_D xp dV$, $p = p(x,y)$
 $\overline{x} = \frac{My}{M}$, $\overline{y} = \frac{Mz}{M}$.
Remark: when $p \equiv 1$, the centre of mass is also called
the material of P$

the centroid of R.

Q.2
Find the centre of mass of a thin plate bounded by the curves

$$x = y^2$$
 and $x = 2y - y^2$ if the density at the point (x,y) is
plx:y]= y+1.
Solution:
The region:
 $1 + y = 2y - y^2 \Rightarrow y = 0$ or 1
 $M = \int_D P dV$
 $= \int_0^1 \int_{y^2}^{2y - y^2} (1 - y) dx dy$
 $= \int_0^1 (1 - y) (2y - 2y^2) dy$
 $= \frac{1}{2}$

Q.3
Find the centroid of the region in the 1st
Octant that is bounded above by the cone

$$z = \sqrt{x^2 + y^2}$$
, below by the plane $z = 0$, and on
the sides by the cylinder $x^2 + y^2 = 4$ and the
planes $x = 0$ and $y = 0$.
Solution:
The region:
 2

We use cylindrical coordinates here.

$$\frac{1}{2} = \sqrt{x^{2} + y^{2}} = \sqrt{r^{2} \cos^{2} \theta} + r^{2} \sin^{2} \theta = T$$

$$0 \le \theta \le \frac{1}{2} \quad dV = \tau d \ge dr d\theta$$

$$0 \le \tau \le 2$$

$$M = vol(D)$$

$$= \frac{1}{4} \times (\pi(2^{2})(2) - \frac{1}{3}\pi(2^{2})(2))$$

$$= \frac{4\pi}{3}$$

$$Myz = \int_{D} \times dV$$

$$= \int_{0}^{\frac{\pi}{3}} \int_{0}^{2} \int_{0}^{1} (rcos\theta)(r) dz dr d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} \int_{0}^{2} r^{3}cos\theta dr d\theta$$

$$= 4$$

$$M_{xz} = \int_{D} y \, dV$$

= $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{0}^{T} (rsin\theta)(r) \, dz \, dr \, d\theta$
= $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} sin\theta \, d\tau \, d\theta$
= $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} sin\theta \, d\tau \, d\theta$

$$\begin{split} M_{xy} &= \int_{D}^{2} dV \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{0}^{T} z \tau dz dr d\theta \\ &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \frac{\tau^{3}}{2} dr d\theta \\ &= \pi \\ \overline{\chi} &= \frac{M_{y2}}{M} = \frac{2}{\pi} \\ \overline{\chi} &= \frac{M_{xy}}{M} = \frac{2}{\pi} \\ \overline{\chi} &= \frac{M_{xy}}{M} = \frac{2}{\pi} \\ \overline{z} &= \frac{M_{xy}}{M} = \frac{2}{\pi} \\ \overline{\tau} &= \frac{M_{xy}}{M} = \frac{2}{\pi} \end{split}$$
The centre of mass is of $(\frac{\pi}{\pi}, \frac{2}{\pi}, \frac{2}{4})$.